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€, = extensional strain in x direction
€7- extensicnal strain in y direction
{-‘] = shear strain in x, y plane

O; = oxtensional stress in x direction

Ty = extensional stress in y direction
J
T:j = shear stress in x, y planc
5.',J' w» elastic constants (59’-‘ 5:/'(, )
E; = _1 = Young's modulus
S1

E) w 1 = foung'!s :nodulus'
S22
G 1
YD ————
7 sy

'Z/,./- - E;‘. 312 = Poisg.on's ratic

= rigidity or shear modulus

'V)'X"" E'),.S12 = Poissont's ratio

My, = bending couple per unit length distributed uniformly on two opposite edges
My = twisting couple per unit length of edge of plate

W = deflection of plate |

h = thickness of plate (equivalent orthotropic plate)

a m width of plate (bending)

b = length of plate (bending)

c = length of side of plate (twisting)

X, ¥ = coordinates of point on surface of plate

A,B,C = constants of integraticn

A, . %, Axy . m conshants in differential equation of plate and are expressicng ip

terms of the elastic constants 8 l j

F (x, ¥y, t) = Force applied normally to face of plate



P

t
foam
m, n

P

L 3

mass density
time
circular frequency of m, n mode of vibration of rectangular plate

node rwibers corresponding to x=diroction and y-direction respectively

load applied through lever to test plates in bending and in twisting



1.
QRIHOGONALLY STIFFENED PLATES

Flexure theory for flat plates of homogeneous orthotropic material has been in
existence for many years, (1)1. Its extension to cover the case of plates with
attached stiffeners was more recently introduced by several investigators (2,3,4,5).
For this latter case the thickmess of the plate is constant and the stiffeners in
each of two orthogonal directions are identical, parallel, and fairly closely spaced.
A repeating unit is regarded as an infinitesimal element of an equivalent orthotro-
pic plate of 'corresponding stiffness factors or compliances. The entire composite
structure will bend and twist approximately the same as a homogeneous orthotropic
- plate of equivalent stiffness. This type of analysis is particularly applicable for
composite structures such as stiffened bottoms in ships and fuselages of airplanes
(6, 7, 8, 9).

BExamination of the technical literature shows that investigators invariably
attempt to estimate the appropriate unit stiffness factors or compliances for
stiffened plates on a theoretical basis, using beam theory as a guide. Cross-con-
traction effects associated with a Polsson's type ratioc are usually neglected.
| The present paper presents an experimental method for the determination of the
affective stiffness moduli of the actual stiffened structure, Rectangular portions
or "patches™ of the plate containing a sufficient number of the stiffeners to be
representative are subjected to pure bending and twisting couples distributed along
their edges.

The effectiveness of the method is investigated by comparison of the fundamental
frequency of the flexural vibrations of a simply supported stiffened plate calou-
lated with the statically determined stiffness factors or oompliqces and then
determined experimentally in vibration teats.
luunbers in parentheses refer to bibliography at end of paper
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A typical stiffened plate is shown in Fige. 1. For simplicity the stiffeners
are shown only in one direction; however, there is no additional difficulty in the
theory itself if there is a second set of stiffeners orthogonal to the first. In
fact, for the plate shown in Fig. 1, the bending stiffness in the direction parallel
to the stiffeners is cbviously different from that in the direction transverse to the
stiffeners.’ This plate has a repeating unit of equally spaced and identical stiffeners.
The spacing is small compared with the length of a stiffener,

For the purpose of detewrnining flexural displacenents, the stiffened plate may
be considered as if it were approximately a plate of honogeneous orthotropic material
of some definite thickness. It can be shown that the elastic constants of this
equivalent orthotropic plate can be chosen in such a manner that it will have approx-
inately the bending and twisting stiffnesses or compliances of the given orthogonally
stiffened plate.

Now suppose that convenlently sized but sufficiently representative rectangular
and square test plates are fabricated just like sections from the stiffened prototype.
These test plates may themselves be considered as small orthotropic plates. 'The
rectangular models will serve for bending testings and the square ones for twisting
tests. The elastic constants determined froa test on the samples will be assumed to
be those corresponding to the stiffened prototype.

It will be assumed further that the plates are effectively homogeneous and ortho-
tropic and therefore have three axes of symmetry at each point. The test plates have
their edges parallel to the stiffeners and hence parallel to the principal directions

of stiffness,
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In the usual notation (10) the stress-strain relations of the equivalent

orthotroplc material may be written for the strains in terms of the stresses and

elastic constants as followss

-
- : = — 0‘,‘; _— 'lsz aﬂ
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Now the equation for equilibrium of an orthotropic rectangular plated loaded

by couples on its boundary is (1,12):

4
'DW_:O-

2w Jw
: ‘%‘x 25 3(4" ‘F’l‘)ﬁy Ei;;q;;:l*f- /sjy -253;71

[zl

where Ay, Ay ‘iy are constants in terms of the elastic constants 34 of the

stregs-strain relations.
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The bending deflection for a rectangular plate with couples M, distributed
on two opposite edges which are themselves perpendicular to one direction of prin-
cipal stiffness is (12):

VLR NSRS
h

The bending deflection [for a second rectangular plate with couples M,
distributed on two opposite edges wiiich are themselves perpendicular to the other
directicn ¢l principal stiffness:is:

-W = oMy (522351 ‘.;32,7?')4'/\" + B] +C - E4]

<

The twisting deflection for a square plate with stiffeners parallel to the
two orthogonal edges respectively and twisting couples M, distributed over all of

the edges is:

W = G':ft S‘Go-")”rAX"‘E’)’*Q- - —i- - 1:5_]
h

It can readily be seen that since equations E3] ’ [4] » and [ 5] are
quadratic in the variables x and y, they satiafy the equation of equilibrium

[2] each of whose terms are of the fourth order. Also, it can easily be shown

that these equations satisfy the boundary oconditions of distributed couples. The

constants of integration A, B, and C are determined from knowledge of the locations
' ' . Ll

of the three support points of the test plate for the case of bending and rm
knowledge of the locations of two support points and a condition of symmetry for

L}
'
]
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the case of twisting.

It is obvious that in bending tests, one may measure W, M, X, and y in tBJ
for one principal direction or in El.] for the other principal direction and there-
by obtain two simultaneous-equations for the determination of the elastic constants
311, 812, and 85, in terms of the cube of the thickness. In twisting tests on
square plate one may measure W, M;, x, and y in [5Jand thereby determins the
shear oonstant Sgg in terms of the cube of the thickness.

If the tests are performed on uniformly thick but unstiffensd plates of ortho-
tropic material the tihiciness could be explicitly determined by a single measure-~
ment (13). However, for stiffened plates, this quantity is not explicitly defined.
The sole condition is that depth of plate plus stiffener shall be small compared to
say the length of a side of the plate. This lack of necessity to explieitly
specify a plate thiclmess or locate a neutral surface of bending for the plate are
strong points in favor of -.he method proposed in this paper.

Once the elastic moduli for an equivalent orthotropic plate are determined by
test, they may be used in calculating bending deflections for plates of identical
stiffened construction but any given boundar, conditions. Also, The determination
of these elastic moduli by statical bending and twisting tests permits one to calcu-
late the dynamic response of orthogonally stiffened plates by replacing the
differential equation of statical equilibrium [.2] by the equation of motion which
will now be developed.

The differential equation for the flexural vibrations of a thin plate of elastic
orthotropic material of constant thickness was established many years ago (1). Its
use in making an experimental study of the fundamental frequency of vibration of
unstiffened wood and plywood plates of consiant thickness was investigated less than
ten years ago (14). This :cheory will be bz:igggz_restﬁted and appropriately inter-
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preted for use in connection with the present problem of the vibration of plates
with stiffeners attached.

The differential equation [2] can be readily modified to allow for external
forces F applied normally to the plate ( 10) .

4%,3.‘#\,%-4 Foy) - 8]

Ads usual the differential equation for the flexural vibration of the plate,

if P becomes a function of time, can be obtained by adding the effective inertia

force ( fh ) to the applied external force F so that the equation becomes:

Ax 4, + A xy B—-gy T '4)' +€h ,'(" 3t) -]

As remarked in conmnection with [2], the constants A, Ly, ny can be put in

terms of the elastic constants Sij' For this purpose, we solve the stress-strain

equations for stress in terms of strain and obtain (10)s

y €).+ E E ?
wh ra‘)' Gx X/ |
E's S22
¥ 55,,-s% S - - @)
/ S
E, 2 ..l -
4 5/1521. -3z
E”" S/z. -
and =
3/%" " Sz
G = 5‘6 G‘] J
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PFor a simply supported rectangular plate the solution of [7] vhen P § 0 is

as can easily be seen:

0 T A S s )

Substitution of [9] into [7] with F g O gives the equation for the

circular frequency P = as follows:
<
T2 [ty g, ad
= M 2H +Dm ----0d
Enn \/f’h Q a4 + a‘b‘ 5’ X
743

t}‘ = E*b
1<
3
/
Dy s z'z W
Z3
*h
D= EX
| | e 3
D&)= G"‘zzh ) and H.-.-D'+2.Dg)
For the fundamental mode m and n each equal unity and for a square plate,

a is equal to b.

It is important to note that fo;’ the case of the stiffened plate, the sij in
equations [3] ’ [I.J , and (5] are proportional to the cube of the thickness h.
This fact together with relations E8] show that the quantities B;, Eyt E ”, and

Gyy Vary inversely as the cube of the thickness h. Hence the quantities D, Dy,
D and Dyy, and H in [10 ] are independent of the thickness h.

Furthermore, the product f h which occurs in flO] and in the differential
equation of motion [7]can bc evaluated by weighing the plate and dividing by the
area of the plate. This is so because in the equation of flexural vibrations, the
term Fh is simply the mass per unit area of the plate.

With these facts, the fundamental frequency of the orthogonally stiffened
plate can be calculated.
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The experimental method used to determine the elastic constants is an adapta~-
tion of one used by Bergstrasser ( 11 ) for isotropic plates and bf Hearmon (12)
for unstiffened orthotropic plates of constant thickness. |

... “he bending tests, the equivalent of a uniformly distributed M, mst be
applied to two opposite sides of a plate. In Fig. 5 the schematic arrangement of
the plate resting on three supports is shown. The actual test arrangement with
loading device to produce the moment is shown in Fig. 7. Between the supports the
assumption, of course, is that the bending moment is uniformly distributed across
the plate.

For the twisting tests, the cquivalent of a uniformly distributed twisting
couple :.; around the entire boundary must be provided. This can be obtained (11)
as shown chematically in Fig. 5 by supporting the plate on two opposite vertices
and loading on the two remaining vertices. The actual test arrangement with
loading device to produce the twisting couple is siiown in Fig. 6.

From the theoretical formulation it is clear what measurements must be nade
to determine tie elastic constants. For the case of bending it is sufficient to
measure the deflections at the origin of coordinates and at a short distance off
center say along the y-axis shown in Fige. 5. For the determination of the shear-
ing modulus ny, it is clear that only a single deflection is required and this
is convenioently neasurelat the origin of coordinates shown on Fig. 5 .

For the bonding tests one rectangular stiffened plate 1s fabricated with
its long edge parallel to one set of the stiffeners and another rectansular
stiffened plate with its long edge parallel to the other set of stiffeners. The
two principal directions of stiffness are thereby orthogonal. For the twisting
test a square stiffened plate is fabricated with one set of its stiffeners par::-

lel with one edge of the plate.
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Por the purpose of experimentally studying the methods proposed in tﬁa present
paper the types of stiffened test plates were selected with proper regard for
economy of fabrication., lHowever, it is considered that they provide useful infore
nmation about the nature of results to be expected in the general case.,

The plate material used was cold rolled steel about one-eighth of an inch
thick. It was ground on both sides to a thickness of 0,108 inches. To satisfy
the requirements previously mentioned, two plates were made for bending and one for
tvisting. Two types of orthogonal stiffeners were provided by milling; grooves in
one side of the plate for one tyre ~ad by silver soldering one-eight inch diameter
brags rods to one side of the plate for the other type. The two patterns with
dinensions are shown in Fig. 2. Photographs of tlie actual plates are shown in
Fig, 3 and in Fig. 4. The bending plates were approximately 104* long by 5i® wide
while the twisting plates were approxim~tely 5g® on each side.

For the purpose of loading the platcs, a lever was used as shown in Fig. 7.
This lever provides a known load on an auxiliary bar or plate suspended beneath
and parallel to the test plate. The auxiliary plate in the bending tests provides
forces on two opposite ends of the test plate, and within the region between sup=~
ports on the test plate approximately uniform moment per unit lenglt is distributed
across the width of the plate. In the case of the twisting test an awriliary bar
. was suspended fron two opposite corners of the test plate and loaded at its center
by a lever.

The load was gradually increased and the corresponding deflection measured at
the chosen point c.: the plate. The results give r lcad -deflection curve for that
particular point. For a linear relation, it is tho slope of this line that gives
a deflection per unit load,[%1 , for use with equations [3] ’ [l.] , and{sj

in determining the equivalent elastic constants.
The deflections of the plates were referred to an absolute rigid frame shown

in Fig. 6 and Fig. 7. A rigid pipe flange of 12 inches inside diameter was machined
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to take a rotatable ground bar on which a sliding steel block is mounted. To this
block; the deflection gage or micrometer is attached. The pipe flange is supported
on top of three equi~height columns of sufficient stiffness. The rotatable ber

ccn be rotated around the center of the pipe flange and the block holding the micro-
meter fixed can be slid axialwise along the smooth bar, In this manner, the deflec-
tion at any point can be measured.

So that the micrometer is not pushed hard against the test plate when measure-~
ments are being :iade, an electric contact indicator with glow tube is used. This
is a pilot indicator with both lamr and magnetic relay which indicate when contact
is just made. The setup is shown in Fig. 6 and Fig. 7.

lieasurements were usually made at two points on the y-axis in addition to those
at the center for the bending tests. The two side point values are averaged. For
both bending and twisting, measurcments were made for each side of the plate. First
one side was up towards the measuring instrument and then the plate was turned over
and the test repeated.

The force-~deflection curves, from which are drived the moment deflection
relations, are plotted in Figs. 8 to 17 inclusive. These curves represent twisting
data for one plate each of the two types of stiffeners and bending data for two
orthogonal directions each of the two types of stiffeners.

The bending deflections are for the center point of the plate and for points
both‘above and below the x-axis on the y=axis. Both of these measurements above
and below the x-axis are not required for determination of constants, but it is
congidered that their average gives a better result.

The results of computing the elastic constants are given in the following table.

| " mable I '

ELASTIC CONSTANTS

S fgﬁer i;#" 'C§= '%Ei‘ x "Cﬁr[jiiﬁ-#~lcf° :géﬁi x1c0° :zéqi x 0%

[ BressBod | o 0n | 0,06 | ~495 | 139 | 495 |
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Notice that )27 8y . The discrepancy is greater in the case of the brass
rod stiffened plate. However, it is considered that the plate deflections are not
sensitive to this constant and that an average value cf S,, and 321 is quite
acceptable, So for the brass rod stiffened plate the average of 312 and 821 is
- 2,5h% x 20~ whense 'ny is 0.26 and -Vyx is 0.18, reasonable values. And for
the grooved plate the average of Sy, and 3,y is = 8.93h° x 10-6. Hhanoevxy is

0.27 and Vyx is 0.40.

From Table I it may be noted that there is considerable difference between
Sll’ the constant corresponding to one principal direction, and S5, the constant
corresponding to the other principal direction. .

While it is obvious that the theory proposed in this paper can be checked by
a study of the deflections at each point of the bent or twisted plates, or by |
loading plates statically with various boundary constraints, it was decided to
make the test a dynamic one and compare the vibration frequencies of simply sup-
ported stiffened plates which are calculated from theory using the statically
determined elastic constants and measured frequencies from the plates driven at

resonance by an electromagnt.,

ON OF ST
In order to determine the fundamental frequency of flexural wvibration of the

stiffened plates, a box-like rigid steel supporting frame was constructed as shown
in Fig. 18. The boundaries of the plates were simply supported in these experiments.
They were devised in a manner explained at length in a previous paper (15).

Briefly, each plate for about three~eights inch from its edge was ground flat and

a 90° V-notch groove of depth equal to about 80% of the plate thickness was
machined at the innermost boundary of the flat ground edge. 4 plate with grooved
edge is shown fastened in the holding frame in Fig. 18, Outside the V-notched
groove the flat edge of the plate is held rigidly on all four sides. It has been
amply demonstrated (15) that this boundary oondition is essentially that of a
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hinged or simply supported plate.

Vibrations were excited in the mounted plate by an electromagnet solidly
mounted just below the center of the plate. The magnet was driven by a Hewlett-
Packard audio oscillator directly, with frequency being slowly increased until the
first resonance condition could be detected. The resonance peak could approxi—.
mately be detectecd acoustically by ear but in the experiments it was precisely
determined with a crystal type phonograph pickup gently touching the plate. The
output from the pickup was fed to a cathode ray oscilloscope where the resonance
peak could be readily observed.

A comparison of the calculated and observed frequencies are shown in Table II.
Data for an unstiffened plate which is practically isotropic are also included.
This plate was‘;round to a thickness of 0,108 incha2s. As previously mentioned,
it was a plate of this thickness which was grooved according to a definite pattern
to produce one type of stiffened plate and had brass rods silver soldered to it
to produce the other type of stiffened plate.

Table II

FUNDAMENTAL FREQUENCY OF PLATE IN C.P.S.

Cest Plate N Calculated Observed
F‘:otropic 1050 4 1050
Grooved pattern 980 960

funss rod stiffeners 1120 1060
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RISCUSSION AND CONOLUSIONS

As a result of this investigation, a method has been devised for the determina-
tion of the stiffness factors or compliances of an ortinogonally stiffened plate.

A previously used method (13) for determining the elastic constants of homogeneous
materials by bending and twisting experiments on plates of constant thickness has
been adapted for the purpose.

For both of two different types of orthogonally stiffened plates, grooved and
rod stiffened, stiffness factors in the two principal orthogonal directions have
been shown to differ by as much as >0 per cent.

An averaging procedure has been used to obtain approximate Poisson type cross-
contraction ratios, The ratios determined in this manner seem reasonable.

The bending data for the brass rod stiffened plates are not as consistent as
those for the accurately machined grooved plates as might be expected. The silver-
soldering process usei on the brass rods has some of the same uncontrollable features
as electric welding in the fabrication of built-up structures. As a result, the
brass rod stiffened plates were slightly warped. Averaging deflection measurements
obtained from both sides of the plate, however, spjear to minimize the effect of
this deviation of the plate from a plane.

It is desirable to e#periment with plates having larger stiffeners than those
used in the present investigation but thp dictates of economy necessarily limited
the scope of the tests. thwithstandin; this fagg, the chosen %;pe of stiffeners

" seem to clearly illustrate the major point of the.investigation; that is, the

bending and twisting tests give reliable elastic constants for calculating flex-
ural behavior of orthogonally stiffened plates under various loads,

It appears that good agreement exists between the calculated and the observed
frequencies of vibration of the fundamental mode of each of the plates tested.
The variations of the frequencies are not so impressive as are the variationsfor
the elastic moduli among the various plates. The theoretical reason for this,
however, is readily understood by observing the square root effoct characteariaiia
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i,
of the frequency fermuia. As a result, the frequency of vibration is not as sensi-
tive a physical varlable as are the corresponding stiffness factors or compliances.

The vibration experinents appoar to give a good conlirumation of the proposed
nethod of obt~lining the equivalent elastic constan.c of stiffened plates.

The agreement betwecn tho theoretical and observed frequencies of the unstiff-
ened plate serves as a vorification of the assumption that the boundaries of the
plates are simply sup orted.

The netiod ¢f producing simply supported boundary conditions seems to be more
suitable than tihcse noted in the scanty laterature on ihe subject. An example of
another method for obtaining a simzl, sup,.orted plate is given in a paper by
Hearaon on the fundanental Irequeacy of wood plaies of constant thickness (14).

It would be intercsting to apply the method pio.csed in the present paper in
order to deteriine the 2orplicrnnes of a stiffened plate in which the stiffeners
are fairly deep.

The product of nmausg density and thiclmess of plate occurring in the pertinent
equations of this paper can be directly determined as mass per unit area of plate
by actually weighing a typical seztion of the plate and dividing by its area.

Also, the proposed nmethod for the determination of the effective elastic constants
of the stiffcned plate make it unnecessary to determine a thickness for the plate
explicitly. These two facts combine to provide a straightforward method for the
determinatign of the dynamical response of a stiffened plate. An example of this
fact is presented in the papar in the forn of a calculation of the fundamental

mode of flexural vibration of a stiffensd plate.
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